skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stoltz, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Herein, we report a novel approach to pyrroloiminoquinones which was enabled by the development of a Larock/Buchwald–Hartwig annulation/cyclization cascade to rapidly construct the core, which was further elaborated to 5 of these natural products. 
    more » « less
  2. (−)-Cylindrocyclophane A is a 22-membered C2-symmetric [7.7]paracyclophane that bears bis-resorcinol functionality and six stereocenters. We report a synthetic strategy for (−)-cylindrocyclophane A that uses 10 C−H functionalization reactions, resulting in a streamlined route with high enantioselectivity and efficiency (17 steps). The use of chiral dirhodium tetracarboxylate catalysis enabled the C–H functionalization of primary and secondary positions, which was complemented by palladium-catalyzed C(sp2)–C(sp2) cross-couplings, resulting in the rapid formation of the macrocyclic core and all stereocenters with high regio-, diastereo-, and enantioselectivity. The use of a late-stage palladium-catalyzed fourfold C(sp2)–H acetoxylation installed the bis-resorcinol moieties. This research exemplifies how multilaboratory collaborations can produce substantial modernizations of complex total synthesis endeavors. 
    more » « less
    Free, publicly-accessible full text available November 8, 2025
  3. Secondary organic aerosol (SOA) is ubiquitous in the atmosphere and plays a pivotal role in climate, air quality, and health. The production of low-volatility dimeric compounds through accretion reactions is a key aspect of SOA formation. However, despite extensive study, the structures and thus the formation mechanisms of dimers in SOA remain largely uncharacterized. In this work, we elucidate the structures of several major dimer esters in SOA from ozonolysis of α-pinene and β-pinene—substantial global SOA sources—through independent synthesis of authentic standards. We show that these dimer esters are formed in the particle phase and propose a mechanism of nucleophilic addition of alcohols to a cyclic acylperoxyhemiacetal. This chemistry likely represents a general pathway to dimeric compounds in ambient SOA. 
    more » « less
  4. In this study we revisit one of the simplest RO2 + RO2 reactions: the self-reaction of the ethene derived hydroxyperoxy radical formed via sequential addition of ·OH and O2 to ethene. Previous studies of this reaction suggested that the branching to ‘accretion products,’ compounds containing the carbon backbone of both reactants, was minimal. Here, CF3O− GC-CIMS is used to quantify the yields of ethylene glycol, glycolaldehyde, a hydroxy hydroperoxide produced from RO2 + HO2, and a C4O4H10 accretion product. These experiments were performed in an environmental chamber at 993 hPa and 294 K. We provide evidence that the accretion product is likely dihydroxy diethyl peroxide (HOC2H4OOC2H4OH = ROOR) and forms in the gas-phase with a branching fraction of 23 ± 5%. We suggest a new channel in the RO2+RO2 chemistry leading directly to the formation of HO2 (together with glycolaldehyde and an alkoxy radical). Finally, by varying the ratio of the formation rate of RO2 and HO2 in our chamber, we constrain the ratio of the rate coefficient for the reaction of RO2 + RO2 to that of RO2 + HO2 and find that this ratio is .22±.07, consistent with previous flash photolysis studies. 
    more » « less
  5. Herein we report our recent progress toward the enantioselective total synthesis of the diterpenoid natural products curcusones A–D by means of complementary Stetter annulation or ring-closing metathesis (RCM) disconnections. Using the latter approach, we have achieved the concise construction of the 5–7–6 carbocyclic core embedded in each member of the curcusone family. Essential to this route is the use of a cross-electrophile coupling strategy, which has not previously been harnessed in the context of natural product synthesis. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)